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In this paper we have explored certain theorems of theoretical interest in the 
domain of finitely conducting hydromagnetic systems. These theorems eluci- 
date the local behavior of the congruences of magnetic (electric) field lines. 
Furthermore, a thermally conducting electromagnetic fluid space-time with 
vanishing conformal divergence is also investigated. 

1. INTRODUCTION 

In recent years a considerable amount of interest and attention has 
been directed towards the study of relativistic magnetohydrodynamics 
(RMHD) field equations given by Lichnerowicz (1967). Yodzis (1971) and 
Banerji (1974) have studied the effect of the magnetic field in galactic 
cosmogony, gravitational collapse, and pulsar theory. Esposito and Glass 
(1977) have formulated a set of conditions for "restricted steady state" and 
proved that an infinitely conducting fluid coupled to the frozen-in mag- 
netic field cannot be electrically neutral in this state. Mason (1977) has 
obtained two relativistic analogs of Ferraro's law of isorotation under two 
different assumptions. His assumption (Mason, 1977) of a Killing vector 
collinear to the magnetic field vector is interesting in the sense that the 
magnetic field lines become "stiff' (Prasad and Sinha, 1979c) when such a 
Killing vector exists. The vanishing of the expansion of magnetic field lines 
implies the conservation (Date, 1976) of magnetic field intensity on each 
individual magnetic field line in the case of perfectly conducting magneto- 
fluids. 

Bray (1974a, b; 1975a, b; 1976) has tried to study the local behavior 
of the congruence of magnetic field lines using Ellis' method (1971). But 
Ellis' method is physically meaningful for the congruences of timelike 
curves, and hence would not be applicable to the study of the congruence 

329 
0020-7748/79/0500-0329503.00/0 �9 1979 Plenum Publishing Corporation 



330 Pr~ad 

of magnetic field lines. The present author (1978a, b; 1979a, b) has em- 
ployed Greenberg's theory (1970a) of spacelike congruences to investigate 
the local behavior of the congruences of magnetic (electric) field lines. On 
using Greenberg's theory (1970a), we (Prasad, 1978a) have shown that the 
magnetic fields always remain frozen-in in a perfectly conducting hy- 
dromagnetic configuration. In such configuration, the congruences of fluid 
flow lines and magnetic field lines are always 2-surface forming (Prasad, 
1978b). A generalization (Prasad, 1979b) of Ferraro's law of isorotation is 
obtained, and thereby it is shown that the magnetic field intensity and 
fluid rotation both increase to a high value when out of a collapsing star a 
neutron star is born. Relaxing the assumption of infinite conductivity, we 
have shown (Prasad, 1979a) that the frozen-in property of magnetic fields 
can still be preserved provided the electric field and fluid vorticity are 
orthogonal. Thus the success of Greenberg's theory in hydromagnetic 
systems invites further investigation of the local behavior of magnetic 
(electric) field lines. 

The purpose of this paper is to obtain a wider spectrum of the 
behavior of magnetic (electric) field lines using Greenberg's theory of 
spacelike congruences. In particular, we have investigated few theorems of 
purely theoretical interest in the domain of RMHD inserting the assump- 
tion of finite electrical conductivity. These theorems shed light on the local 
behavior of magnetic (electric) field lines. Finally we have explored a 
theorem which holds for an electromagnetic fluid space-time in which the 
divergence of the conformal curvature tensor vanishes. 

2. KINEMATICAL PARAMETERS 

In this section we mention briefly the kinematical parameters 
associated with the congruences of timelike and spacelike curves assuming 
that the signature of the space-time is - 2 .  The kinematical properties of 
the fluid flow lines are characterized by the usual decomposition for the 
rate of change of the flow vector (Ehlers, 1961) ui: 

ui;j= oO +COo. + 0"//j + Duiu j (2.1) 

where %., %., and 0 denote, respectively, the shear, rotation, and expansion 
of the congruence of fluid flow lines and D stands for the directional 
derivative along these lines. 

The covariant derivative of the 4-vector n i tangential to the spacelike 
congruence is decomposed according to Greenberg (1970) as 

ni; j = b ij "1- ~ ij "~ b ~ ij -- D*niny + Dniuj - (Dnk uk)u iUj  

+ (D* n k u k) uin j + nk;jU ku i (2.2) 
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where ~t/, ~ u, and 0 are interpreted as the shear, rotation, and expansion 
of the congruence of magnetic field lines, respectively. D* denotes the 
directional derivative along the magnetic field lines. 

3. SOME CONSEQUENCES OF RMHD FIELD EQUATIONS 

In this section we begin to study some consequences of RMHD field 
equations involving the kinematical parameters which are mentioned in 
Section 2. First, we introduce a local observer who measures the deforma- 
tion of the magnetic (electric) field lines in the vicinity of any point P of 
the space-time. Let U i be the 4-velocity of this observer at the point P and 
set 

f i =  u i - h  i, Uini = Uiai ~-.0 (3.1) 

where h i is an arbitrary vector orthogonal to the magnetic (electric) field, 
n; the unit magnetic field vector, and a i the unit electric field vector. 
Furthermore, the vector h i is satisfying the condition 

(3.2) 

The arbitrariness of the vector h i gives freedom in our choice of an 
observer. If we suppose that the observer moving with velocity U g is 
comoving with the fluid at the point P, then M vanishes at this point. In 
this case Greenberg's transport law (1970a) for the vector h i along the 
magnetic (electric) field lines is given by 

and 

- D * h k = D n k - D * u k - ( u i D n i ) u k - ( u i D * n i ) n  ~ (3.3) 

- 1)h k= Dal ,_  l~ul,_(ugDa~)uk_(uil~ai)a k (3.4) 

respectively./) denotes directional derivative along the electric field lines. 
From the Maxwell field equations, we have recently obtained the 

following two relations (Prasad, 1979b): 

and 

s  i - i " U D~.,j"I" [h I ~ ' - 2u ih jopJ -~J  i (3.5) 

s Bi  + 3 O B i - u ~ B J ; j - l e l , ~ i - 2 u ~ J = O  (3.6) 
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where D i is the electric displacement vector, j i  the electric current vector, 
B i the magnetic induction vector, e i the electric field vector, and h i the 

magnetic field vector. The vectors ~t i and &; are respectively, defined as 

~ i =  2 ~ i d- *eO { (lnlhl)j + D*nj- Duj ) (3.7) 

and 

S :-- 2~ '+  g7 { (lnlel)j + :~aj - Duj} (3,8) 

where t~; is the "magnetic vorticity" vector, ~i the "electric vorticity" 
vector, ;u the permutation tensor (or an alternating tensor) onto 2-space 
quotient to the fluid flow and magnetic field lines, and ~u an alternating 
tensor onto 2-space quotient to the fluid flow and electric field lines. Now 
we shall establish the following result. 

Theorem (3.1). The  "magnetic vorticity" vanishes when the mag- 
netic and electric fields are orthogonal, and the fluid flow and 
electric field lines are 2-surface forming. 

Proof. Splitting (3.5) orthogonal to u i and D" and making use of (3.4), 
we obtain 

IO IbX k -  Ihb?, k &'=0 (3.9) 

If the fluid flow and electric field lines are 2-surface forming, then 
/ ~ k = 0 .  In this case (3.9) reduces to 

Contracting (3.10) with n k and making use of (3.7), we get 

(3.10) 

where ~i is defined by 

*i nio~ - 0  (3.11) 

which yields 

~o i ~ 1 ijkl * ~71 uj to kt (3.12) 

~oiTlilkmffi -- [ Ut~ k ,  + Uk~m, + Um ~O tk ] (3.13) 
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Operating 7/~'~b on the resulting equation obtained by the contraction of 
(3.13) with n i, we have 

2,bna =O 

Contracting (3.14) with n b and making use of (3.11), we get 

(3.14) 

which proves the statement. 

(3.15) 

Theorem (3.2). The "electric vorticity" vanishes when the magnetic 
and electric fields are orthogonal, and the fluid flow and magnetic 
field lines are 2-surface forming. 

The proof of this theorem runs on the lines of the proof of theorem 
(3.1). 

We now wish to introduce the concept of "restricted steady state" 
(Esposito and Glass, 1977) in case of a finitely conducting magnetofluid. 
For this purpose, we suppose that the finitely conducting magnetofluid is 
steadily rotating. In this case the fluid flow vector and the electric field 
vector may be expressed in terms of a pair of nonorthogonal commuting 
Killing vectors ~i and ,/i as follows: 

u i = a ~ i  + flrl i, e i =  y/ii + rrl i (3.16) 

where ~i and ,/i are timelike and spacelike Killing vectors, respectively. 
Furthermore, the fluid flow vector is Lie transported along the vectors ~i 
and 7/i. The scalars 7 and 6 are defined by (see Glass, 1977) 

6: =~%,  - y: =*/% (3.17) 

which ensures the orthogonality of e i and u i or, •, ~, and 6 are explicitly 
related by a relation 

~ 8 - / ~  = 1 (3.18) 

The orbits of ~i and ,/i form a two-dimensional manifold with induced 
metric tensor ~,7" In a manner of Glass (1977), one may immediately obtain 
the following results: 
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where W i is the "differential rotation" (Glass, 1977) vector defined by 

Wi=(~/OL),i, e '  Wi=O (3.20) 

where fl and a are functionally independent since % ~ 0 .  We, further, 
assume that the electric and magnetic fields are orthogonal and choose an 
orthonormal tetrad vectors, h~] defined (Glass, 1977) by 

~i0] = u i, X~l] = (2)- ' /2(ai  + l i) 

Xi21 = (2)-1/2(a i _  l i) and hi31 = n i (3.21) 

where l i is the spacelike unit vector along the "differential rotation arm" 
(Glass, 1977) which is orthogonal to the unit magnetic field vector. In view 
of the second relation of (3.19) and (3.21), we observe that the shear tensor 
of the fluid flow lines has two eigenvectors hi'l] and X{2 j with nonzero 
eigenvalues lying in the 3-space and an eigenvector in the direction of the 
magnetic field with zero eigenvalue lying in the 2-space. Since the magnetic 
and electric fields are orthogonal, it is obvious from (3.21) that the 
magnetic field vector lies in the 2-space quotient to the fluid flow and 
electric field lines. At this level we remark that the vanishing of shear 
tensor implies the vanishing of the "differential rotation arm" since the 
electric field vector cannot vanish due to finite electrical conductivity of 
the fluid. The magnetic field lies in a nonshearing spatial direction and 
there is a differential rotation, having a "differential rotation arm" orthog- 
onal to the electric and magnetic fields. 

In view of above arguments we define "restricted steady state" as 

"y;DB j -- y ; D D  j = O = 0 (3.22) 

which has the following two classes of "restricted steady" motions: (i) a 
differential rotation with the magnetic field as an eigenvector (orthogonal 
to the "differential rotation arm") with zero eigenvalue, i.e., 

and (ii) rigid rotation, i.e., 

%B J = 0  (3.22') 

%.=0 (3.22") 

which implies the vanishing of the "differential rotation arm." We deduce 
the following result. 
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Theorem (3.3). The magnetic field and fluid vorticity are aligned 
when the fluid flow and magnetic field lines are 2-surface forming, 
and the electromagnetic fluid with frozen-in magnetic fields or- 
thogonal to electric fields is in "restricted steady state." 

Proof. Using (3.22) and (3.22') in the relation (Prasad, 1979b) 

y~DBk-(a~ +w~)B k + 20Bi-leldti=O (3.23) 

we get 

o~ikB k + [el&i ---- 0 (3.24) 

Operating ~ ilmn on both sides of (3.24), we obtain 

B l ( u m l d  n __ uno)m)  q_ Bm(uno~l ulton) 

+ nn(ulr m - -  umod t) + 2 l e l [  u ' ~  "~ + u'~,~ n' + un~  zm ] 

+ [el[ B'(uma n - u'a m ) + B'~(u~a ' -  uta n) 

+ B~ m -  Urea')] = 0  (3.25) 

where 

13': = ( l n l e l ) " +  ~ a ' -  Du t 

Using the orthogonality condition of magnetic and electric fields in the 
resulting equation obtained by the contraction of (3.25) with UiBm, we get 

IBl2o~n + B"(tomBm)+ 2lel&m~Bm-lel fl"Bma"=O (3.26) 

Again contracting (3.26) with an, we obtain 

IB 12o~ ~an - le l  ~m B m =0 (3.27) 

Now the frozen-in property of the magnetic fields implies that the electric 
field and fluid vorticity are orthogonal (Prasad, 1979ib). Thus (3.27) 
reduces to 

~mBm.,.~-O as le[@O (3.28) 
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Using (3.28) and the theorem (3.2) in (3.26), we get 

IB 12(o n "F (60 raBra)On = 0 (3.29) 

-which proves the statement. 
In view of this theorem we conclude that the fluid vorticity must be 

collinear to the magnetic field and orthogonal to the electric field when the 
electromagnetic fluid is in "restricted steady state" and "MaxweUian 
surfaces" (1978b, 1979b) exist. 

Theorem (3.4). The expansion of the congruence of electromag- 
netic energy flux lines vanishes when the electric field is orthogo- 
nal to the magnetic field, and the magnetic (electric) field lines are 
geodesics. 

Proof. On using the assumption that the electric field is orthogonal to 
the magnetic field in (3.14), we obtain 

~ e a = O  (3.30) 

Similarly, the counterpart of (3.30) can be written as 

~ah a --0 (3.31) 

Using (3.30) and (3.31) in the divergence identity (Prasad, 1979 b) for the 
electromagnetic energy flux vector 

V[i-=- (Inl I Vl) , iv i  + 2{ lhleigo i -  lelhY} + Vi(15ai + D*ni - Dui) (3.32) 

we get 

V~i + WDu i = ( In IV [),i Vi + W(19a i + D* hi) (3.33) 

Making use of Greenberg's definition of expansion for the spacelike 
congruence formed by the electromagnetic energy flux lines in (3.33), we 
have 

21 vlO= V'(~a,+O*n,), as IVl~O (3.34) 

where 0 is the scalar expansion of the congruence of electromagnetic 
energy flux lines,/~a i the curvature vectors of the electric field lines, D*ni 
the curvature vectors of the magnetic field lines, and I Vl the magnitude of 
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the electromagnetic energy flux vector. Equation (3.34) proves the state- 
ment made in Theorem (3.4). Here we remark that the last conditions of 
this theorem can also be replaced by saying that the electromagnetic 
energy flux vector is orthogonal to the curvature vectors of the electric 
(magnetic) field lines. 

Theorem (3.5). The variation of the total energy density of a 
viscous and thermally conducting electromagnetic fluid along the 
flow is balanced by the generation of the energy flux when the 
fluid flow lines are Born rigid and the acceleration is collinear to 
the fluid vorticity. 

Proof We have recently obtained (Prasad, 1979b) the equation of 
continuity for a self-gravitating, viscous, and thermally conducting electro- 
magnetic fluid in the following form: 

D t; + 30( ~ +/~ ) + %(Xeie i + phiM) 

+ 20(~lel 2 + #[hl z) - 2vo2 - piDui + P[i = 0 

where 

(3.35) 

= p + �89 ()q el 2 +/~lh] 2) (3.36) 

p i =  q i _  V i (3.37) 

and 

q i = K (  To, j - T o D u j )  y ij (3.38) 

Here p is the matter energy density of the fluid, qi the heat energy flux 
vector, ~ the total energy density of the electromagnetic fluid, pi  the 
energy flux vector, v(>/0) the coefficient of viscosity, K the heat conduc- 
tion coefficient, and T o the rest temperature. The relation (Prasad, 1979b) 
between the energy flux vector P; and the kinematical parameters 
associated with the fluid flow fines is given by 

e ' =  - + 20,0 + + oZDu  (3.39) 

Contracting (3.39) with Dug and making use of our assumptions, i.e., 

ff ij = O ..~- tOik O l l  k = 0  (3.40) 
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we obtain 

P ' O u  i = - ( Duj) ; k J  k (3.41) 

Again using (3.40) together with the identities (Oliver and Davis, 1977; 
Greenberg, 1970b) 

s toy=0 (3.42) 

D*02 + 4 0 J  + 200*0 i j  = *0 0"s .00 (3.43) 

and 

in (3.41), we get 

D*02 = - 40*02 - 2 o/j*0 i~'  + (Dui)  ;_i.0 ~ (3.44) 

piDui  = 0 = D*02 (3.45) 

Making use of first two conditions of (3.40) in (3.35) and combining the 
resulting equation with (3.45), we obtain 

D ~ -~ - e : i  (3.46) 

which proves the statement. The last relation of (3.45) shows that the 
magnitude of the fluid vorticity vector is conserved on the congruence of 
fluid flow lines. 

An alternating tensor t ~ is defined by 

~J = ~ ijklUka l (3.47) 

By virtue of (2.1),(2.2) for the vector a;  and (3.47), we get 

~ = 2& i - 2u  ~ak*0 k _ ~ ~k( Du k _ l~ak ) (3.48) 

where 

&~_ l_ Ukl,, ,. (3.49) 

From (3.48), we obtain the divergence identity for the "electric vorticity" 
vector, 

~ i.;, "t'~d iDu i - ~o i D a i -  ( ak*0 kui) ;  i 

"" " I ~ki + u k l S a k a i * 0 ' + i e  ( (DUk) ; i - - (19ak ) . i }=O (3.50) 
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For a physical interpretation of (3.50), we assume that the electromagnetic 
fluid space-time admits two Killing vector fields, one of them collinear to 
the fluid flow vector and the other proportional to the unit electric field 
vector. The existence of a Killing vector collinear to the fluid flow vector 
implies (Banerji, 1974) that 

0-- o,j--o, Du,= (3.51) 

where ~ is the magnitude of the Killing vector ~i representing an analog of 
the Newtonian potential. Since 7/~ is a Killing vector collinear to the unit 
electric field vector a~, one can write 

~li ---- r  rli;j + ~j;i = 0 (3.52) 

where ~ is any nonzero scalar. Let us write 

~il~3k( ~i;k "1- ~k;i) "~" fP~/~k( al;k + ak;l) (3.53) 

Using (3.52) in the left-hand side of (3.53), we get 

YiZyfa(,, k) - 0 (3.54) 

which may equivalently be written as 

6,7 + 0"~0. = 0 (3.55) 

which shows that the congruence of electric field lines is "stiff" (Prasad 
and Sinha, 1979c) because the shear and expansion of the congruence of 
electric field lines vanish identically when a spacelike Killing vector 
collinear to the electric field is admitted. Again (3.52) yields 

~0,;aj + ~%ai + ~0(ai;j + aj;i) = 0 

Contracting (3.56) with a ~, we get 

^ 

( Dep)aj - cpd + epOaj = 0 

Again contracting (3.57) with a j ,  we obtain 

/ ~ o = 0  

Using (3.58) in (3.57), we have 

n a j  = (ln (p);y 

(3.56) 

(3.57) 

(3.58) 

(3.59) 
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By means of (3.50), the second relation of (3.51), (3.59), and the frozen-in 
property (Prasad, 1979 b) of the magnetic fields, we obtain 

Co [i + Co iDu~ -~i/Sa~ =0 (3.60) 

Using Greenberg's definition of the expansion for the spacelike con- 
gruence formed by "electric vortex" lines in (3.60), we get 

D(lngo A )-~mi15ai (3.61) 

where m ~ is the unit "electric vorticity" vector, go the magnitude of the 
"electric vorticity" vector, D the directional derivative along the "electric 

I) 

vortex" lines, and A the proper area subtended by the "electric vortex" 
lines as they pass tl~rough the screen in the 2-space quotient to the fluid 
flow and the "electric vortex" lines. From (3.61), we conclude that the 
"electric vorticity" flux through any loop moving with the finitely conduct- 
ing fluid is constant and that the fluid particles which lie initially on an 
"electric vortex" line continue to do so when the electric field lines are 
geodesics or when the "electric vorticity" vector is orthogonal to the 
curvature vector of the electric field line provided our assumptions hold. 
This may also be called as the frozen-in property of the "electric vorticity" 
in the sense of Alfven (1950). 

4. C SPACE CONTAINING THERMALLY CONDUCTING 
ELECTROMAGNETIC FLUID 

A space-time in which the divergence of conformal curvature tensor 
vanishes is called C space in the sense of Szekeres (1964). The property of 
C space is characterized by an identity (Szekeres, 1964) 

1 0  0 (4.1) 

where R/.j is the usual Ricci tensor and R the scalar curvature of the 
space-time. Square brackets denote skew symmetrization. 

We now assume that the space-time is filled with thermally conduct- 
ing electromagnetic fluid. The stress-energy-momentum tensor (Prasad, 
1979 b) for thermally conducting electromagnetic fluid is given by 

Tu=(g*+p*)uiuj-p*go-O~e~@+l.~hj) + Piui+ Piu ~ (4.2) 
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It follows from (4.2) and well-known Einstein's field equations that 

Ro.= - A,, uj + Bgu + (Xe,  +  ,hj) - eju, (4.3) 

where 

A -- p* +p* and 2B=(p-p+~lel2+~lh[ 2) 

We establish the following theorem inserting the assumption that the 
electric and magnetic fields are orthogonal. 

Theorem (4.1). If a thermally conducting electromagnetic fluid 
space-time with harmonic energy flux vector is a C space, then 
one of the following holds: (i) projection of fluid rotation tensor 
vanishes in 2-space quotient to the fluid flow and electric field 
lines when the fluid vorticity and magnetic field are aligned, 
(ii) projection of fluid rotation tensor vanishes in 2-space quotient 
to the fluid flow and magnetic field lines when the fluid vorticity 
and electric field are aligned. 

Proo f  Since a thermally conducting electromagnetic fluid space-time 
is a C space, it follows from (4.1) and (4.3) that 

uiA ,[jUkl dt- ~4Ui; [jUk] + AUiUIk;j] + gi[jn, k] --~kei; tick] + ~keietj; k] 

- td2i;~jhk] + Izhihtj;kj + Pi;[jUkl + Piu[,;. i]- uiP[j;1,1 + ui;ljPI, j = 0 (4.4) 

Contracting (4.4) with u; and making use of the assumption that the energy 
flux vector Pi is a harmonic vector, i.e., Pti;jl=O, we obtain 

A,[juk] + AuIk;j  I + utjB, k I --Auiei;[jek]-- I.tuihi;[jhk] + uiei;[jUk]=O (4.5) 

Splitting up (4.5) orthogonal to u s, we get 

AtOlm -- Xuiei;[lem]- X( e~;kuiuk )u[me, l -- i.tu~hi;[th,,,]- ]s hi;kuiuk )u[mhl] 

-- uiPi;[lUm]-- uipi;[lUm]- u[IPm];kuk=O (4.6) 

Again splitting up (4.6) orthogonal to u i and n ~ both, we obtain 

A * l * m  __ * l*  k )f i ~fj tOlm ~ )? i T ~  "~ ek;[lem]-~-O (4.7) 
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Projecting (4.7) orthogonal to u i and a i both, we finally get 

^i^j  1 i 
~[t'Ym COij + ~ rl r lnml -- 0 (4.8) 

which reduces to 

^ i ^ j  ~1 ~mO~/~- 0 (4.9) 

when the fluid vorticity and magnetic field are aligned, i.e., n i~oit---O. Hence 
(4.9) proves the first statement. Similarly, the counterpart of (4.8) may be 
obtained as 

y l,Y mOgij. + . *  i * j 2 aio~i[lam]~.O (4.10) 

which reduces to 

* i * j  (4.11) y t Y,no~/j = 0 

when the electric field and fluid vorticity are aligned. This proves the 
second statement. This theorem gives a type of physical information that 
follows when it is known that a given space-time containing thermally 
conducting electromagnetic fluid is a C space. However, we have in no 
way attempted systematically to examine all consequences of C space in 
this case. Further results can be investigated. 
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